Autonomous Mass Assembly

Skylar Tibbits, Arthur Olson & Autodesk inc. 

This project investigates chiral self-assembly with many parts in order to explore the aggregate behavior of simultaneous assembly and self-selection. Roughly 240 pieces are agitated stochastically to self-assemble closed dodecahedral molecular structures based on the polio virus capsid. Patterns of attraction are designed within each part to specify chemical complementarity and chirality  (right and left-handedness). Over time and with the right amount of energy, precise structures emerge complete and self-sorted. This continual process shows the various stages of assembly from independent parts to a mixture of assembled parts, then a bath of fully assembled structures and finally with additional energy input broken again into autonomous pieces. This work points towards a future of both tangible educational tools for non-intuitive scientific phenomena as well as new possibilities for industrial-scaleassembly applications.